

Novas Fronteiras em Cardiologia

Polineuropatia Amiloidótica Familiar

Valor da Eco e da Cintigrafia de MIBG no Prognóstico

> Conceição Azevedo Coutinho Hospital de Santa Maria

7 a 9 de Fevereiro 2014 Hotel Vila Galé Ericeira

FAMILIAL AMYLOID POLYNEUROPATHY

- Familial amyloid polyneuropathy (FAP) is a rare, systemic, disease resulting from autosomally dominant single-point mutations in the transthyretin (TTR) gene.
- The FAP V30M-TTR is characterised by sensory-motor and autonomic neuropathy and amyloid deposits of in various organs and tissues. In typical cases, symptoms develop before the age of 40 years leading to death in 10 to 15 years.
- **Cardiovascular manifestations** in V30M-TTR are due to autonomic neuropathy (blood pressure and heart rate control disturbances) and to amyloid deposits in the heart (infiltrative cardiomyopathy, arrhythmias and conduction defects).
- Because transthyretin is predominantly synthesized in the liver, liver transplantation is used to halt or at least attenuate the disease progression. As symptoms will not regress, the procedure should be performed at an early stage.

¹²³I MIBG IMAGING

- ¹²³I metaiodobenzylguanidine (MIBG) imaging is a non-invasive tool for assessing myocardial sympathetic innervation.
- Some studies suggested that myocardial sympathetic denervation often precedes the neurological and cardiac manifestations of the FAP V30M-TTR disease.
 Tanaka M et al. JACC 1997;29:168-74. Azevedo Coutinho C et al. Rev Port Cardiol 2004;23:201-11
- Late heart-to-mediastinum (H/M) MIBG uptake ratio <1.60 is a strong prognostic predictor in ischemic and non-ischemic cardiomyopathies.
- Prognostic value of MIBG imaging in FAP V30M-TTR was never evaluated.

Jacobson AF et al. (ADMIRE-HF). JACC 2010;55:2212-21.

AIMS

- To provide a prospective validation of the long-term prognostic value of myocardial sympathetic denervation assessed by MIBG imaging
- To compare it with other methods for cardiovascular and neurological evaluation in FAP V30M-TTR

Circulation Cardiovascular Imaging

Learn and Live

JOURNAL OF THE AMERICAN HEART ASSOCIATION

Reduced Myocardial 123-Iodine Meta-iodobenzylguanidine Uptake: A Prognostic Marker in Familial Amyloid Polyneuropathy

Maria C. Azevedo Coutinho, Nuno Cortez-Dias, Guilhermina Cantinho, Isabel Conceição, António Oliveira, Armando Bordalo e Sá, Susana Gonçalves, Ana G. Almeida, Mamede de Carvalho and António Nunes Diogo

(Circ Cardiovasc Imaging. 2013;6:627-636)

NEUROLOGICAL EVALUATION

- **1.** Clinical score (0-100) for quantification of neurological symptoms: motor and sensory function, autonomic symptoms and weight
- **2. Neurophysiological (NP) score** (0-100) calculated from standardized nerve conduction studies and needle electromyography.

Neurological involvement was defined by any NP abnormality (i.e., NP score > 0)

Asymptomatic carriers: NP score = 0
 Mild neurological involvement: NP score < 20
 Moderate-to-severe neurological involvement: NP score ≥ 20

CARDIOVASCULAR EVALUATION

1. ECG

2. Holter recording

Holter abnormality: LBBB; AV block $\geq 2^{nd}$ degree; pacemaker; PAC or PVC $\geq 240/24h$; supraventricular or ventricular arrhythmias

3. Ambulatory blood pressure monitoring (ABPM)

ABPM abnormality: mean daytime BP ≥140/90 mmHg or nighttime BP ≥125/75 mmHg; nocturnal systolic BP drop <10% or systolic BP higher at night

4. Conventional echocardiography

Echo abnormality: the mean of septal and posterior wall thicknesses ≥12mm and mitral inflow E/A ratios <1.0 or >2.5

5. ¹²³I MIBG imaging

MIBG abnormality: late H/M <1.60

STUDY POPULATION

Prospective longitudinal study

September 1998 - December 2010

BASELINE CLINICAL CHARACTERISTICS OF THE STUDY POPULATION

	All study		All study participants (N=143)		
Characteristic		Characteristic			
	(N=143)				
Neurological involvement, n (%)	75 (52.4)	Holter abnormalities, n (%)	45 (31.5)		
Neurophysiological score, median (IQR)	2.5 (0-35)	≥2 nd degree AV block, n (%)	6 (4.2)		
Clinical score, median (IQR)	6 (0-22)	Pacemaker rhythm n (%)	12 (8 /1)		
Late onset (age ≥50 years), n (%)	48 (33.6)		12 (0.4)		
Cardiovascular symptoms, n (%)	55 (38.5)	Atrial tachycardia, n (%)	3 (3.5)		
Dizziness or pre-syncope, n (%)	37 (25.9)	Atrial flutter, n (%)	1 (0.7)		
Syncope, n (%)	14 (9.6)	Atrial fibrillation, n (%)	1 (0.7)		
Congestive heart failure, n (%)	3 (2.1)	Non-sustained ventricular tachycardia. n (%)	4 (2.8)		
ECG abnormalities, n (%)	55 (38.5)	Promoture stript contraction $>240/24$ hour $n(%)$	26 (18 2)		
1 st degree AV block, n (%)	15 (10.5)		20 (10.2)		
2 nd degree AV block, n (%)	2 (1.4)	Premature ventricular contraction \geq 240 / 24 hour, h (%)	11(7.7)		
Pacemaker rhythm, n (%)	6 (4.2)	Ambulatory blood pressure monitoring	83 (58.0)		
Left anterior fascicular block, n (%)	17 (11.9)	abnormalities, n (%)			
Right bundle branch block, n (%)	1 (0.7)	High BP, n (%)	51 (35.7)		
Left bundle branch block, n (%)	1 (0.7)	Non-dipper pattern, n (%)	49 (34.3)		
Poor R wave progression in the precordial leads, n (%)	12 (8.4)	Reverse dipper pattern, n (%)	15 (10.5)		
		Echocardiographic characteristics			
abnormalities, n (%)	2 (1.4)	Left ventricular wall thickness ≥12 mm, n (%)	33 (23.1)		
Low QRS voltage, n (%)	1 (0.7)	Mitral E/A ratio <1.0 or >2.5, n (%)	47 (32.9)		
Sinus bradycardia, n (%)	1 (0.7)	Left ventricular wall thickness ≥12 mm & mitral E/A ratio	0		
Sinus tachycardia, n (%)	11 (7.7)	<1.0 or >2.5, n (%)	19 (13.3)		

Cardiovascular abnormalities identified by the ECG, Holter, ABPM and echocardiography were present in 102 subjects (71.3%)

RESULTS

- Characterization of the phenotypic spectrum of V30M-TTR: neurological versus cardiovascular involvement
- Prognostic stratification: prediction of long-term mortality
- MIBG imaging and liver transplantation outcome

CARDIOVASCULAR FINDINGS ACCORDING TO THE SEVERITY OF NEUROLOGICAL INVOLVEMENT

Prevalence of Cardiovascular Abnormalities According to Neurological Involvement

- 46% of asymptomatic carriers had already cardiovascular abnormalities.
- 96% of patients with neurological involvement had cardiovascular abnormalities and their prevalence increased with the severity of neurological disability.

CARDIOVASCULAR FINDINGS ACCORDING TO THE SEVERITY OF NEUROLOGICAL INVOLVEMENT

	Group I	Group II	Group III	p-Value	
Variable	Asymptomatic Carriers (N=68)	NP Score 1-19 (N=27)	NP Score ≥20 (N=48)	l vs. -	l vs. II vs. III
ECG abnormalities, n (%)	11 (16.2)	13 (48.1)	31 (64.6)	<0.001	<0.001
Holter abnormalities , n (%)	8 (11.8)	9 (33.3)	28 (58.3)	<0.001	<0.001
PAC (number per 24h), median (IQR)	4 (0-19)	14 (3-137)	80 (9-479)	<0.001	< 0.001
PVC (number per 24h), median (IQR)	3 (0-10)	18 (4-83)	25 (7-95)	<0.001	<0.001
≥2 nd degree AV block/pacemaker, n (%)	3 (4.4)	5 (21.7)	10 (21.7)	0.002	0.011
ABPM abnormalities, n (%)	25 (36.8)	15 (65.2)	42 (85.7)	<0.001	<0.001
Daytime SBP, mean \pm SD, mmHg	121 ± 9	122 ± 14	122 ± 15	NS	NS
Daytime DBP, mean \pm SD, mmHg	76 ± 6	77 ± 7	75 ± 9	NS	NS
Nighttime SBP, mean \pm SD, mmHg	106 ± 10	112 ± 15	114 ± 15	<0.001	0.003
Nighttime DBP, mean \pm SD, mmHg	62 ± 7	68 ± 10	67 ± 9	< 0.001	<0.001
High BP, n (%)	14 (20.6)	12 (44.4)	26 (54.2)	<0.001	0.001
Nocturnal SBP drop, mean \pm SD, %	13 ± 6	8 ± 7	6 ± 7	<0.001	< 0.001
Non-dipper pattern, n (%)	14 (20.6)	12 (44.4)	23 (47.9)	<0.001	< 0.001
Reverse dipper pattern, n (%)	2 (2.9)	2 (7.4)	11 (22.9)	<0.001	< 0.001
Echo characteristics					
LV wall thickness , mean \pm SD, mm	9 ± 2	10 ± 1	11 ± 3	<0.001	< 0.001
LV wall thickness ≥12 mm, n (%)	6 (8.8)	4 (14.8)	23 (47.9)	<0.001	< 0.001
Mitral inflow E/A ratio, median (IQR)	1.40 (1.10-1.76)	1.08 (0.83-1.34)	1.00 (0.77-1.34)	< 0.001	0.001
Mitral E/A ratio <1.0 or >2.5, n (%)	12 (17.6)	11 (40.7)	24 (50.0)	0.002	0.001
LV wall thickness ≥12 mm & mitral E/A ratio <1.0 or >2.5, n (%)	4 (5.9)	2 (7.4)	13 (27.1)	0.021	0.001

Student T-test or Mann-Whitney test, according to the variable distribution

CARDIAC ENERVATION ASSESSED BY ¹²³I MIBG IMAGING ACCORDING TO THE SEVERITY OF NEUROLOGICAL INVOLVEMENT

	Group I	Group II	Group III	p-Value	
MIBG Parameters	Asymptomatic Carriers (N=68)	NP Score 1-19 (N=27)	NP Score ≥20 (N=48)	vs. -	l vs. II vs. III
Early H/M, mean \pm SD	2.04 ± 0.29	1.88 ± 0.36	1.55 ± 0.33	< 0.001	<0.001
Late H/M , mean \pm SD	$\textbf{2.11}\pm\textbf{0.31}$	1.77 ± 0.36	1.49 ± 0.33	<0.001	<0.001
Washout rate, mean \pm SD	$\textbf{-3.8} \pm \textbf{11.6}$	$\textbf{5.5} \pm \textbf{10.2}$	$\textbf{4.1} \pm \textbf{9.3}$	<0.001	<0.001
Late H/M <1.60, n (%)	2 (2.9)	9 (33.3)	28 (58.3)	<0.001	<0.001

- **A.** Asymptomatic carrier with late H/M=2.5.
- **B.** Patient with neurophysiological score of 55 and late H/M=1.2 who underwent liver transplant 6 months later.

MYOCARDIAL SYMPATHETIC ENERVATION ASSESSED BY 123 I MIBG IMAGING IN FAP V30M-TTR

Distribution of the Late H/M MIBG Uptake Ratio According to Cardiovascular and Neurological Involvement

RESULTS

- Characterization of the phenotypic spectrum of V30M-TTR: neurological *versus* cardiovascular involvement
- Prognostic stratification: prediction of long-term mortality
- MIBG imaging and liver transplantation outcome

PROGNOSTIC ANALYSIS

- Median follow-up duration: 5.5 years
- 53 patients (37.1%) submitted to liver transplantation after a median of 2.8 years
- 32 patients died (22.4%) the cause of death was directly related to V30M-TTR in 91%
- 10 patients submitted to transplant died (6 due to transplant-related complications)

PROGNOSTIC STRATIFICATION CLINICAL AND NEUROLOGICAL CHARACTERISTICS

Survival in Relation to the Neurophysiological and Clinical Scores

PROGNOSTIC STRATIFICATION ECG AND HOLTER CHARACTERISTICS

Survival in Relation to the ECG and Holter Characteristics

PROGNOSTIC STRATIFICATION ABPM AND ECHOCARDIOGRAPHIC CHARACTERISTICS

Survival in Relation to ABPM and Echo Characteristics

PROGNOSTIC STRATIFICATION 123 I MIBG IMAGING

MIRG Characteristics	Favourable	All-cause		Univariate Cox Regression Analysis		
	(N=111)	(N=32)	p-value	Hazard Ratio	95% CI	p-Value
Early H/M, mean \pm SD	1.9±0.4	1.6±0.4	<0.001	0.07	0.02-0.19	<0.001
Late H/M, mean \pm SD	1.9 ± 0.4	1.5 ± 0.4	<0.001	0.07	0.03-0.20	<0.001
Washout rate, mean \pm SD	0±11	3±11	NS	1.02	0.99-1.05	NS
Late H/M <1.60, n (%)	21 (18.9)	20 (62.5)	<0.001	7.19	3.38-15.27	<0.001

Survival in Relation to Late H/M Uptake Ratio

5-year Mortality Rates According to Late H/M Uptake Ratio

PROGNOSTIC STRATIFICATION – MULTIVARIATE ANALYSIS

	Univari	ate Cox	Multivariate Cox Regression Analysis		
Variable	Regressio	n Analysis			
	Hazard Ratio	95% CI	Hazard Ratio	95% CI	p-Value
Age	1.06	1.04-1.09	1.04	1.01-1.06	0.010
Late onset of disease *	2.52	1.25 – 5.01	0.40	0.09-1.91	NS
Neurological involvement +	10.14	3.06 - 33.63	4.37	0.89-21.52	NS
Holter abnormality ‡	3.57	1.73 – 7.36	1.31	0.52-3.34	NS
ABPM characteristics					
High BP §	3.61	1.76 – 7.40	0.64	0.23-1.78	NS
Non-dipper pattern ¶	2.98	1.20 - 7.40	0.34	0.09-1.27	NS
Reverse dipper pattern ¶	0.81	0.36 - 1.84	1.29	0.39-4.20	NS
Echo characteristics #					
LV wall <12mm & mitral E/A <1.0 or >2.5	2.69	1.0 - 7.24	1.70	0.59-4.88	NS
LV wall ≥12mm & mitral E/A 1.0 to 2.5	3.84	1.42 – 10.34	1.92	0.63-5.86	NS
LV wall ≥12mm & mitral E/A <1.0 or >2.5	6.51	2.56 - 16.57			NS
Late H/M	0.07	0.03 - 0.20	0.18	0.06 - 0.57	0.003

* Reference class: onset of disease <50 years; † Reference class: neurophysiological score=0. ‡ Reference class: without Holter abnormalities; § Reference class: normal BP as defined by mean daytime BP <140/90 mmHg and nighttime BP <125/75 mmHg. ¶ Reference class: normal dipper pattern as defined by nocturnal systolic BP fall ≥10%. # Reference class: LV wall <12mm and mitral E/A 1.0 to 2.5

RESULTS

- Characterization of the phenotypic spectrum of V30M-TTR: neurological *versus* cardiovascular involvement
- **Prognostic stratification:** prediction of long-term mortality
- MIBG imaging and liver transplantation outcome

¹²³I MIBG IMAGING FOR PREDICTION OF THE OUTCOME AFTER LIVER TRANSPLANTATION

5-Year Mortality According to Liver Transplant and H/M¹²³I-MIBG Uptake Ratio

- Long-term mortality after liver transplantation differed significantly according to the late H/M assessed before transplantation.
- Patients with late H/M <1.60 were at higher risk of unfavourable outcome, however they still benefited from the procedure.

CONCLUSIONS

- Cardiovascular abnormalities antedated the neurological involvement in a large series of symptomatic and asymptomatic V30M-TTR mutation carriers.
- 2. Abnormalities in the ECG, Holter, ABPM and echo are associated with higher long-term mortality but are not independent prognostic markers.
- 3. This study demonstrated, for the first time, that cardiac sympathetic denervation detected by MIBG imaging is a useful prognostic marker in V30M-TTR patients.
- 4. Patients with late H/M MIBG uptake <1.60 have a 7 times higher risk of death. However, those who were submitted to liver transplantation seemed to benefit from the procedure.